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Abstract 

Scalable management of distributed resources is one of 
the major challenges in deployment of large-scale clusters. 
Managetnent includes transparent fault tolerance, eficient 
allocation of resources, and support for all the needs ofpar- 
allel computing: parallel I/O, deterministic behavior; and 
responsiveness. Meeting these reqkirements with commod- 
ity hardware and operating systems is dificult because they 
were not designed to support global management of a large- 
Fcale system. In this paper we propose a small set of hard- 
ware mechanisms in the cluster interconnect to facilitate the 
implementation of a simple yet powerful global operating 
sysiem. This system, inspired by concepts from the BSP and 
SIMD computational models, allows commodity clusters to 
grow to thousands of nodes while still retaining the usabil- 
ity and responsiveness of the single-node workstation. Our 
results on a software prototype show that it is possible to 
implernerit eficient and scalable system software using the 
proposed set of mechanisms. 

Keywords: Cluster computing, cluster operating system, 
network hardware, debuggability, resource management, 
fault tolerance. 

1 Introduction 

Although workstation clusters are a common platform 
for high-performance computing (HPC), they remain con- 
siderably more difficult to manage than single-node systems 
or symmetric multiprocessors. Furthermore, as cluster size 
increases, the role of the system software-essentially all of 
the code that runs on a cluster other than the applications- 
becomes increasingly more important. The system soft- 

*This work is partially supported by the Spanish MCYT under 
grant TIC2003-08154-CO6-03 and the U.S. Department of Energy through 
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ware's main components include the communication li- 
brary, resource manager, parallel file system, system moni- 
tor, and the infr-astructwre to implement fault tolerance. The 
quality of the syitem software not only affects application 
performancegbui also the cost of ownership of such ma- 
chines. . : 

System software design for high-performance clusters 
traditionally relies on an abstraction that views the network 
simply as a mechanism for moving information with a per- 
formance expressed by latency and bandwidth. The success 
of this interface relies on the implicit assumption that. any- 
performance improvement in the network is directly inher- 
ited by the system software. On the 'other hand, abstract 
interfaces may change to exploit new hardware capabilities. 
For example, in the last decade this basic abstract interface 
has been augmented to exploit distributed shared memory. 
A global, virtually addressed shared memory which enables 
remote direct memory access (RDMA) is now a common 
feature in networks as Infiniband [ 181 or Quadrics [ 191. 

In this paper we try to answer question of what hardware 
features, and thus which abstract inteflace, should the inter- 
connection network provide to the system software design- 
ers? We argue that the efficient and scalable implementa- 
tion of a small set of network primitives that perform global 
queries and distribution of data is sufficient to support most 
system software and user applications. These primitives can 
be easily implemented in hardware with current technology 
and can greatly reduce the complexity of most system soft- 
ware. In a sense they represent the least common denomi- 
nator of the various components of the cluster software, and 
the backbone to integrate a collection of local operating sys- 
tems (OS) into a single, global OS. 

This paper makes the following contributions. First, it 
makes the case for the importance and the potential of hav- 
ing these primitives for global coordination fully imple- 
mented in hardware. Second, a series of case studies shows 
how the system software can benefit from these primitives. 



We provide experimental evidence that resource manage- 
ment and job scheduling can can be implemented on thou- 
sands of nodes and achieve the same level of responsiveness 
as a dedicated workstation, without any significant increase 
in complexity. Finally, we describe how a popular commu- 
nication library, the Message Passing Interface (MPI), can 
be implemented with these global coordination primitives. 
The proposed implementation is so simple that it can run 
almost entirely on the network interface card (NIC) as fast 
as the production-quality MPI. 

The rest of the paper is organized as follows. The next 
section describes some of the system tasks required on clus- 
ters and the problems that need to be addressed to achieve 
responsive and scalable environments. Section 3 details the 
core primitives and mechanisms that constitute the building 
blocks of our proposed scalable system software. Section 4 
presents several case studies and reports several experimen- 
tal results obtained on our software prototype. Section 5 
concludes and offers directions for future research. 

2. Challenges in the Design of System Software 

Many of today's fastest supercomputers are composed 
of commercial off-the-shelf (COTS) symmetric multi- 
processor ( S M P )  servers connected by a fast interconnect. 

Fc-' These node3 IypidallJ us? EommGdity operating systems 
such as Linux to provide a hardware abstraction layer to 
programmers and users. These OSes are quite adequate for 
the development, debugging, and running of applications 
on independent workstations and small clusters. However, 
such a solution is often insufficient for running demanding 
HPC applications in large clusters. 

Common cluster solutions include middleware exten- 
sions on top of the workstation operating system, such as 
the MPI communication library [22] to provide some of the 
functionality required by these applications. These compo- 
nents tend to have many dependencies and their indepen- 
dent designs may lead to redundancy of functionality. For 
example, both the communication library and the parallel 
file system used by the HPC applications implement their 
own communication protocols. Even worse, some desired 
features such as multiprogramming, garbage collection, or 
automatic checkpointing are either not supported at all or 
are very costly in terms of both development costs and over- 
all performance degradation. Consequently, there is a grow- 
ing gap between the services enjoyed on a workstation and 
those provided to HPC users, forcing many application de- 
velopers to complement these services in their application. 
Table 1 overviews several of these gaps in terms of the ba- 
sic functionality required to develop, debug, and effectively 
use parallel applications. Next we discuss some of the gaps 
in detail. 

Job launching. Virtually all modern workstations allow 
simple and quick launching of jobs, thus enabling inter- 
active tasks such as debugging sessions or visual applica- 
tions. In contrast, clusters offer no standard mechanism 
for launching parallel jobs. Typical workarounds rely on 
shell scripts or custom middleware. Job launching times 
can range anywhere from seconds to hours and are usually 
far from interactive. Many solutions have been suggested, 
ranging from the use of generic tools such as rsh and NFS, 
to sophisticated programs such as RMS [9], GLUnix [12], 
Cplant [3], BProc [13], and SLURM [15]. However, be- 
cause of their reliance on software mechanisms, with larger 
clusters (thousands of nodes) these systems may be ex-, 
pected to take many seconds or minutes to launch parallel 
jobs. t I ,  

Job scheduling. In the workstation wor,ld 
granted that several applications can be9 ru 
using time sharing, but this is rarely the ca 
ters. Most middleware used for parallel job .scheduling use 
simple versions of batch scheduling (ortgaCgscheduliflg at 
best). This affects both the user's experience of the ma- 
chine, which is less responsive and interactive, and the sys- 
tem's utilization of available resources! 'Even sytrems that 
support gang scheduling typically revert 'td.relatively high 
time quanta to hide the high overhead'cdsts associated with 
context switching a parallel job [ I  1, 14,-23]?''-'''. """ 

. >  . . .  
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Communication. User processes-running,!in .a ,worksta- 
tion communicate with each other using standard inter- 
process communication mechanisms provided by the OS. 
While these may be rudimentary mechanisms that provide 
no high-level abstraction, because of their low synchroniza- 
tion requirements they are adequate for. serial and .coarse- 
grained distributed jobs. Unlike these jobs, .HPC applica- 
tions require a more expressive set of communication tools 
to keep the software development effort man'ageable. 

The prevailing communication model for.:modern HPC 
applications is message passing, where.processes. use a 
communication library to send synchronous,. and, asyn- 
chronous messages to each other. Of these ,libraries, the 
most commonly used is MPI [22]. These libraries offer 
standards that facilitate portability across various cluster 
and MPP architectures. However, in order to improve the 
latency and bandwidth for single messages, much effort is 
required to tune these libraries to different platforms. An- 
other problem is that these libraries offer low-level mech- 
anisms that force the software developer to focus on im- 
plementation details, and make modeling application per- 
formance difficult. In order to simplify and abstract the 
communication performance of applications, various per- 
formance models have been suggested [6,24]. 
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Table 1. System tasks in workstations and clusters 
Characteristic Workstation Cluster 

Job Launching Operating system (OS) 
Job Scheduling Timeshared by OS 

Communication OS-supported standard IPC mecha- 

Storage Standard file system Custom parallel file system 
Debuggability Standard tools (reproducibility) Parallel debugging tools (non-determinism) 
Fault Tolerance Little or none Application / application-assisted checkpointing 

Scripts, middleware on top of OS 
Batch queued or gang scheduled with large quanta 
(seconds to minutes) using middleware 
Message Passing Library (MPI) or Data-Parallel 
Programming (e.g. HPF) nisms and shared memory 

Determinism. Serial applications are much easier to de- 
bug than their parallel counterparts: their inherent determin- 
ism makes many problems easy to reproduce. In contrast, 
for a large parallel program a trace of message passing may 
have a practically unbounded number of correct ordering; 
the difficulty of debugging an inherently non-deterministic, 
asynchronous system is exacerbated by interference by the 
debugging tool itself by imposing constraints on execution 
order (reduces non-determinism). 

Fault tolerance. Non-determinism also makes fault toler- 
ance using checkpointing challenging because the applica- 
tion is rarely known to be in a state wherein all processes 
and in-transit messages are synchronized. Fault tolerance 
on workstations is not considered a major problem and thus 
rarely addressed by the OS. On large clusters, however, 
where the high number of components results in a low mean 
time between failures, and the amount of computation in- 
vested in a single execution of an application can be sig- 
nificant, fault tolerance becomes one of the most critical is- 
sues. Here there is no standard solution available, and many 
of the existing solutions rely on modifying applications or 
introduce a considerable application slowdown [ 2 ] .  

2.1 Designing a Parallel Operating System 

The design, implementation, debugging, and optimiza- 
tion of system middleware for large-scale clusters is far 
from trivial, and potentially very time- and resource con- 
suming. System software is required to deal with one or 
more parallel jobs comprising thousands of processes each. 
Furthermore, each process may have several threads, open 
files, and outstanding messages at any given time. All these 
elements result in a large and complicated global machine 
state which in turn increases the complexity of the system 
software. The lack of global coordination is a major cause 
of the non-deterministic nature of parallel systems. The 
lack of synchronization also diminishes application perfor- 
mance, for example, when non-synchronized system dle- 
mons introduce computational holes that can severely skew 

and impact fine-grained applications [20]. 
To address these issues, we promote the idea of a simple, 

global cluster OS that makes use of advanced network re- 
sources, just like any other HPC application. Our vision is 
that a cluster OS should behave like a SIMD application, 
performing resource coordination in lockstep. We argue 
that performing this t?sk scalably and at sub-millisecond 
granularity requires hardware support realizable by a small 
set of network mechanisms. Our goal in this study is to 
identify and describe these mechanisms. Using a prototype 
system on a network that supports most of these features, 
we present experimental results thFt indicate that a cluster 
OS can be scalable, powerful, and, relatively simple to im- 
plement. We also discuss the gaps ,between our proposed 
mechanisms and the available hardware, and suggest meth- 
ods for overcoming these’limitations. 

3 Core Primitives and Mechanisms 

In this section, we characterize the primitives and mech- 
anisms that we consider essential in the development of sys- 
tem software for large-scale clusters. We then explain how 
to use these mechanisms to overcome the challenges raised 
in the previous section. 

3.1 Suggestea Mechanisms 

The proposed architectural support consists of just three 
hardware-supported network primitives: 

XFER-AND-SIGNAL Transfer (PUT) a block of data from 
local memory to the global memory of a set of nodes 
(possibly a single node). Optionally signal a local 
and/or a remote event upon completion. By global 
memory we refer to data at the same virtual address on 
all nodes. Depending on implementation, global data 
may reside in main or network-interface memory. 

TEST-EVENT Poll a local event to see if i t  has been sig- 
naled. Optionally, block until it is. 



COMPARE-AND- WRITE Arithmetically compare a 
global variable on a node set to a local value. If the 
condition is true on all nodes, then (optionally) assign 
a new value to a (possibly different) global variable. 

Note that XFER-AND-SIGNAL and COMPARE-AND- 
WRITE are both atomic operations. That is, XFER-AND- 
SIGNAL either PUTS data to all nodes in the destina- 
tion set (which could be a single node) or (in case of 
a network error) no nodes. The same condition holds 
for COMPARE-AND-WRITE when it writes a value to a 
global variable. Furthermore, if multiple nodes simultane- 
ously initiate COMPARE-AND-WRITES with identical pa- 
rameters except for the value to write, then, when all of 
the COMPARE-AND-WRITES have completed, all nodes 
will see the same value in the global variable. In other 
words, XFER-AND-SIGNAL and COMPARE-AND-WRITE 
are sequentially consistent operations. TEST-EVENT and 
COMPARE-AND-,WRITE are blocking operations, while 
XFER-AND-SIGNAL is non-blocking. The only way to 
check for completion is to TEST-EVENT on a local event 
that .XFER-AND--SIGNAL signals. These semantics do not 
dictate whethereithe mechanisms are implemented by the 
host CPU or by a network co-processor. Nor do they re- 
quirejthat TEST-EVENT yield the CPU (though it may be 

3.2 ' Implementation and Portability . 

tdvantageous to do so). I l l  

. I  

The three primitives presented above assume that the 
* network hardware provides global, virtually addressable 
shared memory and RDMA. These features are present in 
several state-of-the-art networks like QsNet and Infiniband 
and their functionality has been extensively studied [ 18,191. 
While the physical implementation aspects of these primi- 
tives are outside the scope of this paper, we note that some 
or all of them have have already been implemented in sev- 
eral other interconnects, as shown in Table 2. They were 
originally designed to improve the communication perfor- 
mance of user'applications. To the best of our knowledge 
their usage as an infrastructure for system software was not 
explored before this work. 

Hardware support for multicast messages sent with 
XFER-AND-SIGNAL is needed to guarantee scalability for 
large-scale systems. Software approaches, while feasible 
for small clusters, do not scale to thousands of nodes. In our 
case, QsNet provides hardware-supported PUT/GET opera- 
tions and events so that the implementation of XFER-AND- 
SIGNAL is straightforward. 

COMPARE-AND-WRITE assumes that the network is 
able to return a single value to the calling process regard- 
less of the number of queried nodes. Again, QsNet includes 
a hardware-supported global query operation that allows the 
implementation of COMPARE-AND-WRITE. 

Table 2 shows the expected performance of the mecha- 
nisms that are already implemented by several interconnect 
technologies. While several networks already support at 
least some of these mechanisms, we argue that they should 
become a standard part of every large-scale interconnect. 
We also stress that their implementation must exhibit scal- 
ability and high performance (in terms of bandwidth and 
latency) for them to be useful to the system software. 

Table 2. Measured/expected performance of 
the core mechanisms for n nodes 

' 

t 1 ,  

Network COMPARE (ps)' ' XFER (MB/s) 

Gigabit Eth.ernet [21] 46 log n rJbt axailable 
Myrinet [4,5] 20 log n N 15n 
Infiniband [ 181 20 log n Not available' 
Q S N ~ ~  ~ 1 9 1 )  < 10 ., . > 150n 

BlueGeneL [ 13 < 2  700n 
I :  ' I  . : . _ I $ '  .!iCJ 

. , \ ' '  :!. :.>; *.;I; % ! ; t i .  
> I  I .  

3.3 System Software Requirement3 . , . . . . .  ailibSolutions I 

'Next we examine the areas where .currend 'kydtdm soft- 
ware is lacking and explain how the' pi%po$&d 'm&kiankms 
can simplify the design and implementation of pracfical so- 

i ? f w $ y j ~ ~ ; . ; : < ; i  ' 

lutions. Table 3 summarizes these arguments.- 

, . .  , , L ' : I '  ' > ' > , ,  . , . 
,' I ,  .: I /  .,!, 
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Job Launching The traditional appro?ch!,to Job Jaunch- 
ing, including the distribution of executable and data files 
to cluster nodes, is a simple extension of single-node job 
launching: data is transmitted using network file systems 
such as NFS, and jobs are launched with scripts or simple 
utilities such as rsh or mpirun. These methods do not scale 
to large machines where the load on the network file system, 
and the time it would take to serially execute a binary on 
many nodes, make them inefficient and ippracFica1. Several 
solutions have been proposed for this problem, ali focusing 
on software tricks to reduce the distribution time. For.exam- 
ple, Cplant and BProc both use thei;,own ,tree-based algo- 
rithm to distribute data with latencies that are logarithmic in 
the number of nodes [3, 131. While more portable than re- 
lying on hardware support, these solutions are significantly 
slower and not always simple to implement [lo]. 

Decomposing job launching into simpler sub-tasks 
makes more clear that it needs only modest effort to make 
the process efficient and scalable: 

0 Executable and data distribution are no more than a 
multicast of packets from a file server to a set of nodes, 
and can be implemented using XFER-AND-SIGNAL. 

'Multicast is an optional operation in the Infiniband standard 
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Table 3. Network mechanisms usage 
Characteristic 

Job Launching 

Job Scheduling 

Communication 

1 Storage 
Debuggability 

Fault Tolerance 

Requirement Solution 

Data dissemination 
Flow control 
Termination detection 
Heartbeat 
Context switch responsiveness 
PUT 
GET 
Barrier 
Broadcast 
Metadata / file data transfer 
Debug data transfer 
Debug synchronization 
Fault detection 
Checkpointing synchronization 
Checkpointing data transfer 

XFER-AND-SIGNAL 
COMPARE-AND-WRITE 
COMPARE- AND - W RI TE 
XFER-AND-SIGNAL 
Prioritized messages / Multiple rails 
XFER-AND-SIGNAL 
XFER-AND-SIGNAL 
COMPARE-AND-WRITE 
COMPARE-AND-WRITE + XFER-AND-SIGNAL 
XFER-AND-SIGNAL 
XFER - AND - S IG N A L 
COMPARE-AND- WRITE 
COMPARE-AND-WRITE 
COMPARE-AND-WRITE 
XFER-AND-SIGNAL 

We may use COMPARE-AND-WRITE for flow control 
to prevent the multicast packets from overrunning the 
available buffers. 

message is propagated to the nodes using a software-based 
multicast tree, increasing in latency as the cluster grows. 
Finally, even though the system is able to efficiently con- 

Actual launching of a job can be achieved simply and 
efficiently by multicasting a control message to all the 
nodes that are allocated to the job by using XFER- 
AND-SIGNAL. In response the system software on 
each node would then fork the new processes and wait 
for their termination. 

The reporting of job termination can incur much over- 
head if each node sends a single message for every 
process that terminates. This problem can be solved 
by ensuring that all the processes of a job reach a 
common synchronization point upon termination (us- 
ing COMPARE-AND-WRITE) before delivering a sin- 
gle message to the resource manager (using XFER- 
AN D - S I G N A L) . 

Job Scheduling. Interactive response times from a sched- 
uler are ’required to make a parallel machine as usable as 
a workstation. This in turn implies that the system must 
be able to perform preemptive context switching with the 
same latencies we have come to expect from single pro- 
cessor systems, that is, on the order of a few milliseconds. 
Such latencies are virtually impossible to achieve without 
hardware support: the time required to coordinate a context 
switch over thousands of nodes can be prohibitively large 
in a software-only solution. A good example of this is the 
Score-D software-only gang scheduler of Hori et nl. [14]. 
There the time for switching the network context on a rel- 
atively small Myrinet cluster is more than two thirds of the 
total context switch time. Furthermore, the context switch 

text switch between different jobs, the coexistence of appli- 
cation traffic and synchronization messages in the network 
could unacceptably delay response to the latter. If this oc- 
curs even on a single node for even just a few milliseconds it 
will have a detrimental effect on the system responsiveness. 

I To overcome these problems the network should offer 
capabilities to the software scheduler for preventing these 
delays. The ability to maintain multiple communication 
contexts alive in the network securely and reliably, with- 
out kernel intervention, is already implemented in some 
state-of-the-art networks like QsNet. Job context switch- 
ing can be easily achieved by simply multicasting, using 
XFER-AND-SIGNAL, a control message to all the nodes in 
the network. One method of guaranteeing quality of service 
for synchronization messages is to have support for message 
prioritization. The current generation of many networks, in- 
cluding QsNet, does not yet support prioritized messages in 
hardware, so a workaround must be found to keep the sys- 
tem messages’ latencies low. In our case, we exploit the fact 
that some of our clusters have dual networks (two rails), and 
use one rail exclusively for system messages so that they do 
not compete with application-induced traffic. 

Determinism and fault tolerance. Even when a single 
application is running (one network context, no preemp- 
tion), messages can still be en route at different times and 
the system’s state is not deterministic. When the system 
globally coordinates all the application processes, parallel 
jobs can be led to evolve in a controlled manner. Global 
coordination can be easily implemented with XFER-AND- 
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SIGNAL, and can be used to perform global scheduling of 
all the system resources. Determinism can be enforced by 
taking the same scheduling decisions between different exe- 
cutions. At the same time, the global coordination of all the 
system activities helps to identify the states along the pro- 
gram execution in which it is safe to checkpoint the status. 

Communication. Most of MPI’s, TCP/IP’s, and other 
communication protocols’ services can be reduced to a 
rather basic set of communication primitives, e.g. point-to- 
point synchronous and asynchronous messages and multi- 
casts. If the underlying primitives and the protocol reduc- 
tions are implemented efficiently, scalably, and reliably by 
the hardware and cluster OS, respectively, the higher level 
protocol can also inherit the same benefits of scalability, 
performance, and reliability. In many cases, this reduction 
is simple and can eliminate the need for many of the im- 
plementation quirks of protocols that need to run on a va- 
riety of network hardware. To illustrate this strategy we 
have implemented a small subset of the MPI library, called 
BCS-MPJ IS], ,which has sufficient functionality to support 
real applications. As shown in the next section these appli- 
cations have similar performance using BCS-MPI as using 
production-quality versions of MPI, but have the potential 
to benefit from the simplicity, determinism and scalability 
of BCS-MPI. 1 ’,. 

, , I  I > ..,; 3 .  ,. 

.. 
To demonstrate our thesis that these mechanisms can 

be exploited by a scalable global OS we built a prototype 
resource-management system, called STORM, and tested it 
on three architectures. In all cases we used the Quadrics 
Elan3 network as our interconnect because it supports most 
of the mechanisms described in Section 3. In this section 
we review the performance and scalability that can be ob- 
tained with these mechanisms on three tasks: job launching, 
job scheduling, and deterministic communication.2 

. .  

4.1. Software Environment 

Our prototype resource-management system is com- 
posed of a set of damons that run on the compute nodes 
and management node of a cluster [lo]. It contains a net- 
work abstraction layer that uses the described mechanisms 
for executing tasks such as job launching, process coordi- 
nation (e.g. gang scheduling), and resource accounting. Al- 
though currently implemented as user-mode damons, we 
plan to fully incorporate the core functionality of STORM 

*In [lo] we study in detail other properties of STORM’sjob scheduling 
and job launching abilities, and model their scalability 

with the Linux kernel to obtain optimal performance and la- 
tencies. The code is relatively small at around 10,000 lines 
of C for the core functionality. 

In addition to resource management, the core primi- 
tives can be used to implement almost any communica- 
tion protocol while still retaining the advantages of perfor- 
mance and determinism. Here we have implemented the 
previously mentioned BCS-MPI. To use BCS-MPI applica- 
tions simply need to be re-linked against the new libraries 
without any code modification. However, to achieve the 
best performance of BCS-MPI it can be beneficial to re- 
place blocking communication calls such as MPI-SendO 
and MPIRecv() with their non-blocking dounterparts. This 
allows BCS-MPI to aggregate seve;al’Foi&AAication calls 
together within the same timeslice wheneve: ’possible, so 
improving the possibility of interleaving communication 
and computation. 

In the following case studies we used both synthetic and 
real HPC applications. The applications SWEEP3D and 
SAGE are representative of two hydrodynamics codes from 

8 1  11, 

! ,<’ $ 1  .,I i?Iyi;l7:!i ::, . , 
4.2. Hardware Environment , . , . , .’ , !’! 1,  _ .  

~ ~ ! ~ l l  ;& :J., ;. , . 
For the experimental evaluatiqn :wel; used)&wo differ- 

ent clysters’ at LANJJCCS-~ to test ;o.tq.:Reghanisms on 
different processor . .  .> .  :architectures. The clusters, are called 
Crescendo and Wolverine. All clyiers used al’l28:port 
Quadrics Elite switch and QuadricssoftwareLli6?dry version 
1 S.0-0. Table 4 summarizes the hardware comprising each 
cluster. 

c 4 ,  I .  I .  1 

4.3. Job Launching 

In this set of experiments we study the cost associated 
with launching jobs with STORM and analyze STORM’S 
scalability with the size of the binary and the number of PES 
on Wolverine. We use the approach taken by Brightwell et 
al. in their study of job launching on Cplant [3], which is 
to measure the time it takes to launch run a program of size 
4 MB, 8 MB, or 12 MB that then terminates immediately. 

STORM logically divides the job-launching task into 
two separate operations: the transmission of the binary 
image, and the actual execution, which includes send- 
ing a job-launch command, forking the job, waiting for 
its termination, and reporting back to the machine man- 
ager (MM). For the transmission of the binary images the 
MM uses XFER-AND-SIGNAL for multicasting chunks and 
COMPARE-AND-WRITE for flow control. To reduce non- 
determinism the MM can issue commands and receive the 
notification of events only at the beginning of a timeslice. 
Therefore, both the binary transfer and the actual execu- 
tion will take at least one timeslice. To minimize the MM 
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Table 4. Cluster Description 
Component Feature Crescendo cluster Wolverine cluster 

Node Number x PES 32 x 2 64x4 
Memoryhode 1 GB 8GB 
VO busednode 2 2 
Model Dell PowerEdge 1550 Alphaserver ES40 
os Red Hat Linux 7.3 Red Hat Linux 7.1 

CPU Twe (meed) Pentium-I11 ( 1GHz) AlDha EV68 (833MHz) 
I. . I  

VO bus 5 p e  64-bit/66MHz PCI 64-biU33MHz PCI 
Network NIC model 1 x QM-400 Elan3 2 x QM-400 Elan3 
Software Compiler Intel CRortran v5.0.1 Compaq’s C Compiler 

W 

P 75 

50 

25 

0 4 8 1 2  4 8 t 2  4 8 1 2  4 1 1 2  4 8 1 2  4 8 1 2  4 8 1 2  4 8 1 2  4 8 1 2  

1 2 4 8 16 32 64 128 256 

Processors , .  

Figure 1. Send and execute times for several 
tile sizes on an unloaded system (Wolverine) 

overhead and expose maximal protocol performance, in the 
following job-launching experiments we use a small time 
quantum of 1 ms. 

Figure 1 shows the time needed to transfer and execute 
a do-nothing program of sizes 4 MB, 8 MB, and 12 MB on 
1-256 processors. Observe that the send times are propor- 
tional to the binary size but grow only slowly with the num- 
ber of nodes. This is explained by the scalable algorithms 
and hardware mechanism that are used for the send opera- 
tion. On the other hand, the execution times are quite inde- 
pendent of the binary size but grow more rapidly with the 
number of nodes. The reason for this growth is the skew, 
mainly due to the OS, that is accumulated by the processes 
of the job. In the largest configuration tested a 12MB file 
can be launched in 1 lOms, a remarkably low latency. 

Scalability Issues These job launching results are com- 
parable to other systems in the literature for clusters of up 
to a few hundreds of nodes (see Table 5) .  Our premise is 
that one of the main advantages of using hardware mecha- 

Table 5. A selection of job-launch times (in 
seconds) found in the literature 

Software Job-launch time / program size 

rsh 90 Minimal job on 95 nodes [ 121 
RMS 5.9 12MB job on 64 nodes [ 101 
GLUnix 1.3 Minimal job on 95 nodes [ 121 
Cplant 20 12MB job on 1,010 nodes [3] 
BPrW 2.7 12MB job on 100 nodes [13] 
SLURM 4.9 Minimal job on 950 nodes [ 151 
STORM 0.11 12MT3jobon64nodes[10] 

nisms is that the resource manager can inherit the scalabil- 
ity features of the hardware layer. To verify this property, 
we have elsewhere presented a detailed model of STORM’S 
job-launching scalability [lo]. In that work we have also 
extrapolated the expected job-launching performance of the 
software-based methods found in the literature. Not sur- 
prisingly, the hardware-supported mechanisms of STORM 
provide at least an order of magnitude better performance 
on very large clusters. In fact, it is the only system that is 
expected to deliver sub-second performance on thousands 
of nodes. 

4.4. Job Scheduling 

STORM supports a variety of job scheduling algorithms 
including various batch and time-sharing methods. Some 
of the time-sharing methods require a global synchroniza- 
tion message (strobe), which STORM implements using 
XFER-AND-SIGNAL. We have chosen to focus our eval- 
uation specifically on gang scheduling [7], which is one 
of the most popular coscheduling algorithms. In partic- 
ular we have studied the effect of timeslice on overhead. 
Smaller timeslices yield better response time at the cost 
of decreased throughput (due to scheduling overhead that 
cannot be amortized). To measure this overhead, we use 
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and communication are scheduled and the communication 
requests are buffered. At the beginning of every timeslice 
a partial exchange of communication requirements, imple- 
mented with XFER-AND-SIGNAL and TEST-EVENT, pro- 
vides the information needed for scheduling the communi- 
cation requests issued during the previous timeslice. After 
that all of the scheduled communication operations are per- 
formed by using XFER-AND-SIGNAL and TEST-EVENT. 

The BCS-MPI communication protocol is implemented 
almost entirely in the network interface card (NIC). By run- 
ning on the NIC's processor, BCS-MPI is able to overlap ,m the communication with the ongoing computation. The ap- 

70 

n 3 60 

8 50 

i:: 
20 

3 g 10 

0 
0.1 1 10 100 lo00 

Time quantum (ms) 

Figure 2. Effect of time quantum wlth a multi- 
programming level (MPL) of 2 on 32 nodes 

SWEEP3D and a do-nothing synthetic program, and run 
two copies of each concurrently, with different timeslice 

- i y a b s :  Figure 2 shows the average run time of the two jobs 
for timeslice values from 3 W p  to 8 seconds, running on 
the entire Crescendo cluster: The smallest timeslice value 
that the scheduler can handle gracefully is ~ 3 0 0 p s .  any 
less than which the node cannot process the incoming strobe 
messages at the ratesthey arrive. With a timeslice as short 
' as 2ms STORM can run multiple concurrent instances of 
.' GWEEP3D with virtually no performance degradation over 

a single instance of the appli~ation.~ This timeslice is an 
order of magnitude smaller than the local Linux scheduler's 
quanta, and is significantly smaller than the smallest time 
quanta that conventional gang schedulers can handle with- 
out significant performance penalties [9]. This, together 
with brisk job launching, allows for workstation-class sys- 
tem responsiveness on a large parallel system. 

4.5. Communication Library 

In the following experiments we demonstrate the perfor- 
mance of BCS-MPI. Of interest here is the impact of BCS- 
MPI's global synchronization of all the nodes in order to 
schedule communication requests issued by the application 
processes. We also provide and analyze some results com- 
paring the performance of BCS-MPI to that of Quadrics 
MPI, a production-quality implementation of MPI. 

With BCS-MPI a global strobe is sent to all the nodes 
(using XFER-AND-SIGNAL) at regular intervals. This 
tightly couples all the system activities by requiring that 
they occur at the same time on all nodes. Both computation 

)This result is also influenced by the poor memory locality of 
SWEEPJD-the lack of a small memory working set implies minimal ex- 
tra penalty for a context switch. 

plication's processes directly interact (transparently via the 
BCS-MPI library) with threads running in the MC. When 
an application process invokes a communication primitive, 
it simply posts a descriptor in a region of NIC memory that 
is accessible to a NIC thread. This descriptor includes all 
the communication parameters which are needed to com- 
plete the operation. The actual communication is performed 
by a set of cooperating threads running in the NICs (using 
XFER-AND-SIGNAL). In QsNet, these threads can directly 
readlwrite fromlto the application process memory space 
(RO copies to intermediate buffers are required). Moreover, 
the posting of the descriptor is a lightweight operation, mak- 
ing the entire overhead of the BCS-MPI call even lower than 
that of the Quadrics MPI. 
The communication protocol is divided into micro- 

phases within every timeslice and its progress is also glob- 
ally synchronized. To illustrate how BCS-MPI primitives 
work, two possible scenarios for blocking and non-blocking 
MPI primitives are described in Figure 3(a) and Figure 3(b), 
respectively. In Figure 3(a), process P1 sends a message 
to process P2 using MPISend and process P2 receives a 
message from P1 using MPIXeceive: (1) P1 posts a send 
descriptor to the NIC and blocks. (2) Pa posts a receive de- 
scriptor to the NIC and blocks. (3) The transmission of data 
from P1 to P2 is scheduled since both processes are ready 
(all the pending communication operations posted before 
timeslice i are scheduled if possible). (4) The communi- 
cation is performed (all the scheduled operations are per- 
formed before the end of timeslice a + 1). ( 5 )  PI and P2 
are restarted at the beginning of timeslice a. (6)  PI and P2 
resume computation. Note that the delay per blocking prim- 
itive is 1.5 timeslices on average. However, this penalty can 
be usually be avoided by using non-blocking communica- 
tions or by scheduling a different job in timeslice i + 1. 
Figure 3(b) shows the same situation for non-blocking MPI 
primitives. In this case, communication is completely over- 
lapped with computation with no performance penalty. 

In Figure 4(a) the runtime of SWEEP3D for both BCS- 
MPI and Quadrics MPI is shown for various numbers of 
processes on the Crescendo cluster. The effective overlap 
between computation and communication along with the 
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Figure 3. Blocking and Non-Blocking MPI-Send/MPI-Receive Scenarios in BCS-MPI 

n 
I . 

low overhead of its primitives allow BCS-MPI to slightly 
outperform Quadrics MPI, with speedups of up to 2.28%. 

Scalability Issues To complete the application study and 
to gain a better understanding of BCS-MPI’s scalability, 
we show SAGE’S performance on Crescendo with Quadrics 
and BCS-MPI. Unlike SWEP3D,  which requires square 
configurations, SAGE can run on any number of nodes. Fig- 
ure 4(b) shows the run time of SAGE on varying both the 
number of nodes and the problem size, up to 62 (one node is 
reserved for the MM). Both versions perform similarly be- 
cause SAGE uses mostly non-blocking point-to-point com- 
munication. Most notably, BCS-MPI performs slightly bet- 
ter than Quadrics MPI for the largest configuration, which 
indicates that the scalability of SAGE is not an issue with 
BCS-MPI and this cluster size. 

5. Conclusions and Future Work 

In this paper we proposed a new abstraction layer for 
large-scale clusters. This layer, which can be implemented 
by as few as three communication primitives in the network 
hardware, can greatly simplify the development of system 
software. In our model the system software is a tightly- 
coupled parallel application that operates in lockstep on all 
nodes. If the hardware support for this layer is both scalable 
and efficient the system software inherits these properties. 
Such software is not only relatively simple to implement but 
can also provide parallel programs with most of the services 
they require to make their development and usage efficient 
and more manageable. In particular, we discuss how this 
abstraction layer can be used for the implementation of ef- 
ficient, deterministic communication libraries, workstation- 
class responsiveness, and transparent fault tolerance. We 

have presented initial experimental results which demon- 
strate that scalable resource management and application 
communication are indeed feasible while making the sys- 
tem behave deterministically. Our future work will expand 
to incorporate transparent fault tolerance into the system 
software. We also plan to explore other possible benefits 
of a global operating system, such as coordinated parallel 
YO and debugging. Lastly, we plan to migrate our code into 
the Linux kekel. Such an integration should also improve 
further the performance of the cluster operating system. 

References 

[l] Challenges in developing scalable scalable software for 
Bluegena. In Scaling to New Heights Workshop, Pitts- 
burgh, PA, May 2002. 

[2] G. Bosilca, A. Bouteiller, F. Cappello, S. Djailali, G. Fedak, 
C. Germain, T. Heradt, P. Lemarinier, 0. Lodygensky, 
F. Magniette, V. Neri, and A. Selikhov. MPICH-V Toward 
a Scalable Fault Tolerant MPI for Volatile Nodes. In Pro- 
ceedings of IEEELACM Supercomputing 2002 (SC’02), Bal- 
timore, MD, November 2002. 

[3] R. Brightwell and L. A. Fisk. Scalable parallel application 
launch on Cplant. In Proceedings of IEEWACM Supercom- 
puling 2001 (SC’OI), Denver, CO, November 10-16,2001. 

[4] D. Buntinas, D. Panda, J. Duato, and P. Sadayappan. Broad- 
casVmulticast over Myrinet using NIC-assisted multidesti- 
nation messages. In Workshop on Communication, Architec- 
ture, and Applications for Network-Based Parallel Comput- 
ing (CANPC ’00), High Performance Computer Architec- 
ture (HPCA-6) Conference, Toulouse, France, January 2000. 

[5 ]  D. Buntinas, D. Panda, and W. Gropp. NIC-based atomic 
operations on MyrineVGM. In SAN-I Workshop, High 
Performance Computer Architecture (HPCA-8) Conference, 
Boston, MA, February 2002. 

9 



I I I 

3oL4 4 i6 25 36 49 
Number of Processes 

(a) Non-Blocking SWEEP3D (Crescendo) 

[6] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. 
Schauser, E. Santos, R. Subramonian, and T. von Eicken. 
hgP: Towards a realistic model of parallel computation. 
In Proceedings of ACM SIGPLAN Symposium on Principles 

' and Pmctice of Parallel Programming, pages 1-12, 1993. 
' [7] D. G. Feitelson and L. Rudolph. Gang scheduling perfor- 
ma? benefits for fine-grain synchronization. Jouml  of 

' P a d l e l  'and Distributed Computing, 16(4):36318, De- 

, * * * I [SI J. Fernandez, F. Petrini, and E. Frachtenberg. BCS MPI: A 
I . I  .I I , New Approach in the System Software Design for Large- 

.Scale Parallel Compters. In Proceedings of IEEUACM Su- 

' 3 cember1W. 

'. -' ~ & 

r 131 

percomputing 2003 (SC'03), Phoenix, AZ, November 2003. 
E. Fracynberg, F. Petrini, S. Coll, and W. chun Feng. 
Gang scheduling with lightweight user-level communica- 
tion. In Proceedings of the 30th International Conference 
on Parallel Processing (ICPP'Ol), Workshop on Scheduling 
and Resource Management for Cluster Computing, Valen- 
cia, Spain, September 2001. 
E. Frachtenberg, F. Petrini, J. Femandez, S. Pakin, and 
S. Coll. STORM: Lightning-Fast Resource Management. In 
Proceedings of IEEUACM Supercomputing 2002 (SC'02), 
Baltimore, MD, November 2002. 
H. Franke, P. Pattnaik. and L. Rudolph. Gang Scheduling 
for Highly Efficient Distributed Multiprocessor Syetems. In 
Proceedings of the 6th Symposium on the Frontiers of Mas- 
sively Parallel Computation (FRONTIERS '%), pages 1-9, 
Ahnapolis, MD, October 1996. 
D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M. Vahdat, 
and T. E. Anderson. GLUnix: a global layer Unix for a net- 
work of workstations. Software--Practice and Experience, 
28(9):929-961, July 25, 1998. 
E. Hendriks. BProc: The Beowulf distributed process 
space. In Proceedings of the 16th Annual ACM Interna- 
tional Conference on Supercomputing (ICs '02), New York, 
NY, June 22-26.2002. 
A. Hori, H. Tezuka, and Y. Ishikawa. Overhead analy- 
sis of preemptive gang scheduling. In D. G. Feitelson and 
L. Rudolph, editors, Job Scheduling Strategies for ParaNel 
Processing, pages 217-230. Springer Verlag, 1998. 

I 

'"24 8 16 32 48 62 
Number of Processes 

(b) SAGE (Crescendo) 

[15] M. A. Jette, A. B. Yoo, and M. Grondona. SLURM: Simple 
linux utility for resource management. In D. G. Feitelson 
and L. Rudolph, editors, Job Scheduling Strategies for Par- 
allel Processing, pages 37-51. Springer-Verlag, 2003. 

[16] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasser- 
man, and M. Gittings. Predictive Performance and Scalabil- 
ity Modeling of a Large-Scale Application. In Proceedings 
of IEEWACM Supercomputing 2001 (SC'Ol), Denver, CO, 
November'2001: 

[17] K. R. Koch, R. S. Baker, and R. E. Alcouffe. Solution of the 
first-order form of the 3-D discrete ordinates equation on a 
massively parallel prmssor. Transacrions of the American 
Nuclear Society, 6,5( 108): 198-199, 1992. 

[18] J. Liu, J.  Wu, D. K. Panda, and C. Shamir. Designing clus- 
ters with Infiniband Early experience with Mellanox tech- 
nology. Submitted for publication. 

[19] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. 
The Quadrics Network High-Performance Clustering Tech- 
mology. IEEE Micro, 22(1):46-57, JanuarylFebruary 2002. 

[20] F. Petrini, D. Kerbyson, and S. Pakin. The Case of the Miss- 
ing Supercomputer Performance: Achieving Ophmal Per- 
formance on the 8,192 Processors of ASCI Q. In Pmceed- 
ings of IEEUACM Supercomputing 2003 (SC'03), Phoenix, 
AZ, November 2003. 

[21] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy OS- 
bypass NIC-driven Gigabit Ethernet message passing. In 
Proceedings of IEEWACM Supercomputing 2001 (SC'Ol), 
Denver, CO, November 1&16,2001. 

[22] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don- 
gama. MPZ: The Complete Reference, volume 1, The MPI 
Core. The MIT Press, Cambridge, Massachusetts, 2nd edi- 
tion, September 1998. 

[23] Thinking Machines Corporation. NI Systems Programming, 
1992. Version 7.1. 

[24] L. G. Valiant. A Bridging Model for Parallel Computation. 
Communications of the ACM, 33(8): 103-1 11,  August 1990. 

10 


